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FOREWORD

This is Summary Report No. 2 on the Booster Attitude Stabi-
lization Network Synthesis. It was prepared by Republic Aviation
Corporation for the National Aeronautics and Space Administration-
Marshall Space Flight Center, under NASA Contract NAS 8-5016.

Principal investigators for the effort were Nicholas C. Szuchy,
Joseph J. Lane, and Judith C. Johnson of Republic Aviation Corpo-
ration. Mario H. Rheinfurth and Robert S. Ryan of the Dynamic
Analysis Branch, Aeroballistics Division, NASA-MSFC, were
technical directors for the contract.




ABSTRACT 3977

This repori presenis the resuiis of an investigation of a iechnique
for synthesizing networks with resistive loads resulting in normalized
element values that have voltage transfer functions meeting the gain-
phase compensation requirements set by NASA. By minimization of
the least squared error function using an iterative process such as
the "tangent descent to a minimum" for a desk calculator, or the
"gradient technigue" for a digital computer, the normalized element
values can be determined.

The concept of synthesizing networks from topological consider-
ations is developed in Sections IV and V. A quadratic lag function is
considered in detail in Section VI; 2 comparison is made between the
classical synthesis technique and the one considered in this report.

By considering topological configurations of interest, the mathematical
process ( which can be mechanized for digital computer application)
yields less complex networks and non-ideal passive elements than those
determined by classical synthesis techniques.

Recommendations are made for a digital computer program that
should be written for 1) defining the objective function to include various
network topologies of interest, and 2) mechanizing the iterative process
used to determine the component values. The report suggests that addi-
tional work in specific areas may lead to simpler, more straightforward
computer procedures for the realization of any network that is generally

optimum in terms of its configuration and passive elements. 2 /ﬁ
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SECTION I

INTRODUCTION

In the process of introducing stabilization networks in the attitude stabiliza-
tion loop of space vehicles, design problems are often encountered that may still
be considered more in the realm of the "arts" than the "sciences." In an effort
to bring some form of organization to the "*design art," a system approach has been
considered that allows one to maintain an awareness of the ultimate circuit design
objective while proceeding with the necessary calculations associated with network
synthesis. By considering the problem from a "logical'’ point of view, it is felt
that no clear demarcation between 1) approximation, and 2) realization, should
exist. However, the technique suggested in this report is still a two-fold approach,

with an interface relationship that allows for a simpler realization technique.

The required performance characteristics of the phase-shaping (stabiliza-
tion) networks are defined in Section II. The gain or attenuation characteristics
are first av.pproximated1 by a finite number of semi-infinite slopes, each of which
in turn is closely approximated by the attenuation curve of a Butterworth or
Tschebyscheff function. The resulting transfer function is then checked to deter-
mine if the phase requireménts are satisfied. Depending on which is the more
stringent requirement, i.e., gain or phase, it is possible to interchange the pro-
cedure outlined above. The resulting function forms a sort of interface require-
ment that now also has to satisfy the circuit realizability conditions. Once the
interrelationships are all completely satisfied, the associated rational transfer
function completely defines the allowable phase-shaping networks.

The non-unique aspect of circuit synthesis allows for a very large number
of circuits, all satisfying a specified transfer function requirement. Therefore,
the circuit synthesis problem may be interpreted geometrically as "'the deter-
mination of a particular desirable subset from that set which satisfies the
circuit requirements." The two possible approaches to solving this problem are:
1) manipulating the mathematically defined requirements until a circuit topology
is derived, or 2) determining a likely circuit topology and fitting the circuit




parameters to the requirements by a minimization technique.

The latter approach is used in this report, since it allows the circuit
design engineer freedom to determine the network configuration and to satisfy
that requirement first before proceeding to the calculation of the circuit para-

meters. The design engineer chooses a network topology that will satisfy the

specified transfer function requirements, chooses initial values for the network

element, and determines the network parameters by an iterative process that
minimizes2 the error between the specified transfer-function and that of the
initially chosen network. Since only RLC elements are admitted, this approach
is concerned with passive reciprocal networks without mutual inductance. A

flow diagram of the design procedure is given in Figure I-1.

NASA CURVE zggwggz CHECK
GAIN-PHASE H—®=  FITTING TRANSFER OVERALL
REQUIREMENTS PROCEDURE FUNCTION REQUIREMENTS
CHECK DETERMINE
TERMINATION NETWORK
CRITERION TOPOLOGY
EVALUATE ' FORM
FERROR FUNCTION ERROR Fuucnoui
AT NEW POINT E(x)
TAKE STEP T INITIALIZE
IN DIRECTION EVALUATE EVALUATE SELECT
- e ERROR FUNCTIO
OF STEEPEST GRADIENT INITIAL
DESCENT E(X®) POINT X9

Figure I-1. Flow Diagram for Design Procedure
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SECTION I

APPROXIMATION

This section considers a method of obtaining a transfer function satisfying
the NASA gain-phase specifications in terms of a finite number of semi-infinite
slopes on a "Bode plot, " which may be considered as the straight line approxima-
tions to the continuous curve defined by Butterworth functions. The following

items will be discussed in this section:

° NASA specifications
® Approximation of a NASA specification

A. NASA SPECIFICATIONS

Figures II-1 through II-12 show the NASA gain-phase specifications as
bounded regions on a "Bode plot.” The equation associated with each figure de-
fines the low order solid line curve that closely satisfied the requirements. The
technique used fo fit the specifications may be simply described as a judicious
modification of the semi-infinite slope approximations. The term "judicious
modification” is used because once the form of the expression is derived, using a
Butterworth or Tschebyscheff function, the break-points for the first-order terms
and the damping ratio and natural frequencies of the quadratic forms must be ad-
justed to give a closer "fit"" to the specifications.

The primary difficulty encountered in determining the equations was the
fact that the various modes, as exemplified By the bounded regions, were all con-
tained within a frequency band of about one decade width. A high-order rational
function probably could be found that would satisfy both the gain and phase re-
quirements exactly. However, it was felt that the increased complexity of the

circuit would more than outweigh the small errors introduced by an inexact fit.

B. APPROXIMATION OF A NASA SPECIFICATION®

The routine of determining the transfer function for the particular set of
specifications of Figure I-11 and Figure II-12 will now be considered, though

on the surface they do not appear to be too restrictive. A semi-infinite slope




approximation to the curve indicates that a minimum attenuation requirement of
24 db/octave exists between the first and second modes. Although this require-
ment is not too difficult to satisfy if the attenuation requirement is the only thing
that has to be considered, the phase requirement imposes an added constraint
that restricts the problem. As noted in Figure II-13 and Figure II-14 (log mag-
nitude and phase diagrams for a first-order lag and a quadratic lag), the insertion
effects are more pronounced on the phase angle (one decade before the corner
frequency) than on the magnitude. Consequently, care must be exercised in de-
termining the breakpoint.

From a table of factors4 of Butterworth polynomials for n = 4 (since the
semi-infinite slope approximations are in multiples of 6n db/octave), it was found

that the first two resulting quadratic lag terms are:

3o50) * 1]
Ka 981> » 2(0.3820) (5557 981>+ 1][(3 sasj+ 2(0. 9238)(3, 981) +1
0.3827 (0 9238
= Q (3 5.981 / % (3les1
To turn the attenuation curve upward and at the same time introduce some leading
phase angle terms to aid the phase requirements, a positive semi-infinite slope

of 30 db/octave is introduced at a corner frequency of 12.59 radians. The result-

ing lead terms from the table of factors of Butterworth polynomials for n =5 are:

2 2
[“ 12?591(128. 59> * 2(0'809)<12?59> +1:H:<1zs.59>

S 0.809™N . (70.309
+ 2(0.309) K“——lz.59>+ 1] L, (12.59) Q1<12 59_/%\12.59.

After some adroit "adjustments, ' the resulting transfer function was found to be:

L, (12.59) Q1(12 59) Q3<12 59

(30981> Q4<3 saT) 2 (5os

T(s) = I-1)
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0.7

with the quadratic lag, Q6 " 500. being introduced outside the system response
specification to satisfy the realizability requirements.
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Figure II-13. Log Magnitude and Phase Plots for a
Simple First Order Lag Function
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SECTION III

DESIGN CRITERION

The method of synthesis from the topological point of views’ 6 requires the
adoption of a criterion to determine when a particular network transfer function

t(s) "best" approximates the given transfer function T(s). An error
€(5) = T(s) - s) (m-1)
will exist whenever the two transfer functions are not identical.

The simple expedient of considering the square of the error would produce
a meaningful measure, since it would eliminate the problem of negative and posi-
tive errors negating each other. Specifically, the two functions developed in this

section

t 2 2
E =z [R(ws)AR(‘."s) ~L(wg)By(wy) - nR(ws):l * [R(ws) B(wg) + AW )Bp () - nI(ws)]
§=0
(m-2)
and

t
@:Z [R(ws) - Ro(wsj]z + [I(w J - L@ s)]z (I-3)

s=1

consider a sum-of-squares criterion as the useful measure of the error between
the two transfer functions. Each of the above error functions states that over the
whole spectrum, 7 at those discrete points of interest, some error (as

indicated by the above relations) will exist.

As with all error criteria or grading systems, it must be considered on an
individual basis and satisfy the particular requirement of the situation. Both error
Equations (III-2 and II-3) are developed and presented, although the first one was
used extensively for the calculation of the network parameters. Since both are
similar and valid definitions of a form of the sum of square error criterion, for
the purpose of clarity, a distinction is made between them by calling the first

19




error function E and the second error function &. The following items will be

discussed in this section:
b E Error criterion
° ® Error criterion
A, ERROR CRITERION

From the curve approximation, the transfer function is defined in general

form as:

i= N, + N;S+ NZS2 + -t ann

T(s) = = 5 (I1-4)
i D, + DS+ D,8 + ---+D_§"

T o

At the discrete frequencies of interest, the above may be evaluated in terms of

its real and imaginary components as:

T(jwy) = R(wy) + j L(w,) (II-5)

The transfer function derived from a particular topology can be defined in

the frequency domain as:

np(@J) + j ny(wy)

W9 = A @) 7A@y

where:

(I0I-6)

It

nR(ws) real component of numerator

il

n(w) imaginary component of numerator

Ag(ey)
Alay)

It

real component of denominator

imaginary component of denominator

20




Equations III-12 and III-13 are used in the linearized approximations to deter-
mine the increments added to each variable X at each point in the iterative pro-

cess.

B. ERROR FUNCTION

From the given NASA graphical performance specification, the minimum-
phase physically realizable transfer function can be represented by the rational

function of the complex frequency variable as n ]

E A +AS+AS + A S L AS
T(s)=-EQU—-'1—‘-(s)= o 1 22 seeveenssc A =;=10 a-14)

IN B+ BS+B,S +....o..... B S B

Separating the two rational polynomials of Equation (III-14) in terms of M and N (their
even and odd parts, respectively) results in

MN,  (AgrASP+L)+ (A,5+AS° +.. 1)
T(8) = 3o = 5 = (II-15)
2N2 (B #B,S” +....)+ (B;S+B, 8. ..)
Rationalization of Equation ITI-15 results in
OMN; M,N, MM,NN, N Mp-NpM, N
T "y N, X MN, - 2 2 2 2 (III-16)
otNy 2 N M, N, M, -N,

where the first term on the right is an even function of s and the second term on
the right is an odd function of s.
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Thus, for a set of discrete angular real frequencies, wr , (r=1,2,....m),
Equation (III-16) can be written in terms of real and imaginary components suit-

able in the manipulations of subsequent work, as:

M.M,-N.N N,M,-N,M
Ty = —5—y2| ¢+ | = Ri@)+ i)

3 2 2 .2
M, -N, M, -Ny

s=juwy, s=jw r
The ensuing mathematical development will describe a numerical technique for

(II-17)

synthesizing a network with imposed constraints for a specific application.

The requirements for the control application under consideration are to
synthesize a linear, passive, reciprocal, transformerless three-terminal net-
work (3T.N.) with given terminations, the transfer function of which closely

approximates Equation (III - 14) in its coefficient values.

The approximating transfer function obtained from that class of networks
containing the desired topology is:

‘158
.—ap
WH.

-
Il
(=]

2 n
_a0+als+a2s +.......ans _
To(s) = = (III-18)

2 m
bo+bls+bzs + .......bms

18
-
mu

s
Il
(=4

where the summation running variable is of the same order as that of Equation (III-14).
Equation (II-18) will, in general, be nonlinear in both the discrete real frequency
variable (which may or may not be periodic) and its coefficients, the available
dependent variable parameters, which are normally multilinear functions of the
element values of the network. For convenience of notation, the dependent vari-
ables are defined as x, where i=1,2,....n. Rewriting Equation (II-18) in the
form to coincide with Equation (III-17), we obtain,

24




m m, -n,n n,m_-n,m
. 172 172 172 7271 .
To(]wr) = 2 * 2 2 = Ro(wr) * ]Io(wr)
mp2-1n, m, -n, (I-19)
s=jwr s=j<.¢)r

For r=1,2,....n

Network synthesis being non-unique, there are an infinite number of circuits
satisfying Equation (III-14), but since we have imposed topological constraints,
our investigation is limited to a finite number. Even so, the element values in
a single circuit satisfying the constraints may take on any number of possible
combinations of values and still satisfy the terminal conditions. The objective
is to determine any set of element values (Ri’ Li’ Ci) contained in Equation
(II1-18) which approximates Equation (III-14), the set to consist of realistic
values. The unknown element values of Equation (III-18) approximating Equa~
tion (III-14) are determined by the minimization of the sum-of-squares error,
i.e., optimization in the least squares sense. This error criterion was chosen

on the basis of being mathematically the most tractable problem.

The principle of least squares states that the most desirable values of the
unknown parameters are those for which the sum of the squares of the errors
(differences between approximating and desired functions) is a minimum.

The sum-of-squares error is derived as follows:

Form the numerical difference between Equations (III-17) and (III-19):

€(w) = T(w ) - T (W) = [R(w ) - R (@ r)] +j [I(w ) - 1 0(wr)] (II-20)

Take the absolute value of both sides:

e 1= [Re) - Ryp] + i [ie) - 1]l
- (II-21)

3
= {[R(wr) - Ro(wr)]z + [I(wr) - Io(wr)]z}

25




Squaring both sides of Equation (III-21) results in:

2 2 2
lewp | = [Riwp - Ry + 1) - 1,00 (m-22)

It is this quantity in Equation (III-22) redefined as

2 2 2
¢ = Ie(wr) | = z {[R(wr)-Ro(wr)] +[1(wr) - Io(wr)] (II1-23)

r=1

which is to be minimized.
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SECTION IV

CIRCUIT TOPOLOGY

In this section, a description of the networks is considered in terms of
their physical geometry or configuration; it consequently has the generic title of
network "'topology' as the all-inclusive property. Since only the basic concept
of the mathematics of topology is necessary to yield interesting and useful results
in the application of network synthesis, the following items will be discussed in

this section:

g Graph Concept
L Circuit Equations

A. GRAPH CONCE PT9

When considering an electrical network from a geometric or topological
point of view, its graph is of great importance. A graph is a diagram represent-
ing the structural framework of the network; it is found by replacing each of the
circuit elements by line segments, with each line segmenf connecting two vertices,

or nodes.

A branch is a line segment of a graph, including its two vertices. Its length
or curvature has no meaning; only the vertices it connects are important. Each
network element, i.e., resistance, capacitahce, or inductance, could be considered
as a branch; or a complicated combination of network elements could be considered
as a branch. Mutual inductances are excluded from this consideration and con-
sequently are not defined. In drawing a graph all sources are removed, with the
voltages short-circuited and the current open-circuited. Figure IV-1(a) is an ex-
ample of an electrical network and its associated graph, Figure IV-1(b).
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Figure IV-1. Electrical Network and Its Associated Graph

In summary, in the graph concept the topology of the network is important,
i.e., what branch connects which node pair. A mathematical description is pos-
sible by formulating an array having one column for each branch and one row for
each node. In each row of the array a +1 is placed in the column corresponding
to a branch termination, a -1 is placed in the column corresponding to a branch
origin, and zero if neither of the preceding two conditions is satisfied. The

array so generated is termed the node-incidence matrix or vertex-incidence

matrix of the graph (In). Another topological description of the graph is possible,
(leading to a dual development) by noting the incidence of the branches on the
loops, then formulating an array having one column for each branch and one row
for each loop (or mesh). In each row of the array, a +1 is placed in the column
corresponding to a branch direction the same as that traversed by the loop; a -1
is placed in the column corresponding to a branch direction opposite to the one
traversed by the loop; and zero is used if the branch is not contained in the loop.

\‘The array so generated is termed the branch-mesh incidence matrix of the graph

(Ib). Since the latter description is the only one used in the present work, it
will be simply designated by the capital letter ""I'" without any subscript; all sub-

sequent derivations will be directed along this line.

The graph concept allows one to formulate Kirchhoff's basic circuit laws

in concise matrix notation as:10
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Kirchhoff's current law (KCL) - The summation of all the branch
circuits at a node, by the continuity condition, must be zero.

i -2 iq =0

p P q

p represents all branches terminating at node n

q represents all branches originating at node n

In matrix notation this can be written as:
[In] li@wl=0 (Iv-1)

where [In] = node-incidence matrix

(i (t) ] = column matrix of branch currents.

Kirchhoff's voltage law (KVL) - The summation of the branch voltages
around a closed loop, must be zero.
v -Zv =0 (IV-2)

p P q 1

p represents all branch voltages in direction of loop traverse
q represents all branch voltages in the opposite direction of loop
traverse

In matrix notation this can be written as:
M ivipl=o (Iv-3)

where [I]= branch mesh incidence matrix

[v (t) 1= column matrix of branch voltages.

KVL in terms of the branch voltages is given by:

(131 0v ®] = [e 0] | V-4)

where [ee(t)] is the column matrix, each of whose elements gives the total

source voltage rise in the corresponding loop.

(i (1= 010 ] (Iv-5)

v, 01=12, 10 0] . (IV-6)
= [z, 101" [i (1) (V-7) -

[1] (2, 01 [i ()] = [e (0] (IV-8)
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or (z] [ie(t)] = [ee(t)] (IV-9)
where [Zz]=11] [Zbr] oy

Where Z in Equation (IV-9) represents the impedance matrix for a particular loop.

Adapting the Kron11 convention of referring to the diagonal matrix [Zbr] as
the primitive network impedance matrix or simply the "primitive impedance
matrix, " it is possible to determine the impedance matrix for the network once

the incidence matrix for the topology is known.

As an example of the usefulness of the "primitive matrix" concept, consider
the development of the network impedance [Z ] for the three-loop five-branch net-
work shown in Table IV-2, Figure 5. From Equation IV-9

(2] =11 [z, ] 1)’
. . 12 . .
therefore the characteristic impedance™™ may be determined by matrix multi-~

plication by considering the expression

1 1 0 0 0 Z, 0 0 0 01 1 0 0~1
0 -1 1 1 0fj0 Z, 0 0 0//1 -1 0
(zl=0 0 -1 0 10 o0 Zg o oljo 1 -1
0 0 0 z, 00 0
0 0 0 0 2Z 0 0
L L 2L A
resulting in:
B ]
(2,+2,) -Z, 0
[z]= -Z, (Zy*+Z5+Z,) | ~Zg
] 0 -Zg (Zg + 25)J

B. CIRCUIT EQUATIONS

Considering a generalized n-mesh linear network, it is possible to write

. . - . . 13
the "equations of motion' describing its behavior as:

E.=Z. 4, +Z. i + 7. i + —cmmmmmmmmomne +Z, i (IV-10)

17 211l T Zyplg T Zygig F In'n

Ey =250, +Z

i

2olp t Zoglsg * 2n'n
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Eg = Zg) ig+ Zgly + Zggig + 3nin

E =Z i1+ 2 oly +Z iy + —mmmmmmme +2Z 1
El’ E PURIEIE En represent the voltage, or the forcing or disturbing function
applied to the contours of the mesh under consideration. By the principle of
superposition, the total effect of the voltages applied to the network is equal to
the sum of the effects of each individual voltage applied individually. For this
report, without losing any generality, only one forcing function is considered,
with all the others being equal to zero: E1 = E. Therefore the above equations

in matrix form may be written as:

C T 1. T
Eil 1211 219 %33 " Zinll (Iv-11)
0 | |29 Zgp Zgg ——-—=-- Zon || g
0 | | 231 %32 %33 =~~~ Z3n || 13
0 an Zn2 Zn?, Znn 1n
or: T -7
[(E]1=[2z] ] ‘ (IV-12)

The elements Zij’ are in general complex quantities, where:

i =] Represents mesh self-impedances (IV-13)
ij ={

i #j Represents mesh mutual impedances
Therefore the current through the kth loop may be determined as:
o IMIEg
i =
’Zl

the voltage drop across an impedance in the kth loop is:

and (Iv-14)

e, = 2y i (IV-15)
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resulting in a transfer function:

ko t(s) = el 2, (IV-16)
E, [z
|M| represents the minor of the determinant |Z|, resulting from the cancelling of

that column which belongs to the variable of interest, and of that row which cor-

responds in Equation (IV-11) to the expression with the non-zero right side.

The determinant of the impedance matrix Z developed in Equation (IV-9) is
identical to the one in Equation (IV-14), therefore there is a definite link between

the topological development of the impedance function and the circuit development.

Table IV-1 summarizes the five admissible14 branches considered in this

work, as making up the primitive impedance matrix [Z].

TABLE IV-1

ADMISSIBLE BRANCHES

Branch Configuration Impedance Function (Zi)
.zv\/\,._fWY\_.i 1
€_ R+ LS+ cs
AN~ R+ LS
1
e [ R+ 55
AN~ R
‘ 1
—¢ o8

It may be noted that only practical branch configurations are considered, i.e.,
configurations with dissipative elements. The one contradiction to this state-
ment is allowing for the existence of an ideal capacitor as a branch element;
however, it was felt that for all practical purposes the capacitor does exist as

an ideal element. Figure IV-2 is the generalized network-graph and incidence
array from which all the two and three mesh admissible topologies considered
were generated as summarized in Table IV-2. The specific networks considered
are represented in Figures IV-3 through IV-17, with the general network transfer

function.
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TABLE IV-3.

SUMMARY OF DERIVED TRANSFER FUNCTION

i
z n
T(s)= n=o0 NnS
J m
i j Figure Title
0 1 1v-4 Resistive Load, One Loop, 3-Element Circuit
2 2 Iv-3 Cne Loop, 5-Element Circuit
2 3 IvV-6 Resistive Load, Two-Loop, 8-Element Circuit
2 3 IvV-8 Resistive Load, Two-Loop, 6-Element Circuit
4 4 IV-5 Two Loop, 10-Element Circuit
4 4 Iv-1 Two Loop, 8-Element Circuit
4 5 Iv-10 Resistive Load, Three Loop, 13-Element Circuit
4 5 Iv-12 Resistive Load, Three Loop, 11-Element Circuit
4 5 Iv-14 Resistive Load, Three Loop, 11-Element Circuit
4 5 IV-15aa Resistive Load, Three Loop, 12-Element Circuit
4 5 IV-15bb Resistive Load, Three Loop, 11-Element Circuit
4 5 IvV-17 Resistive Load, Three Loop, 9-Element Circuit
6 6 Iv-9 Three Loop, 15-Element Circuit
6 6 Iv-11 Three Loop, 13-Element Circuit
6 6 Iv-13 Three Loop, 13-Element Circuit
6 6 IV-15a Three Loop, 14-Element Circuit
6 6 IV-15b Three Loop, 13-Element Circuit
6 6 Iv-16 Three Loop, 11-Element Circuit
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SECTION V

MINIMIZATION TECHNIQUES15

The problem of minimizing ihe error function E of the scveral variables
Xps Xy ceeoXp, which possesses continuous first and second partial derivatives
with respect to these variables, was restricted in this effort to the consideration
of three basic tJechniques:16 1) the tangent descent method; 2) the Southwell
relaxation technique; and 3) the method of steepest descent, or "method of
gradients." Since manual computation was used exclusively to determine the
element values, the first two techniques proved to be most useful, since they in-
volved only the first partial derivatives. However, with the digital computer, the
method of steepest descent (requiring mixed second partials) would be used,
since practically no computational discrimination on the part of the computer is

required.

The general problem of determining the actual element values will be con-
sidered from a minimization point of view. The following items are discussed

in this section.

o Inequality Constraints
L Quadratic Program

A. INEQUALITY CONSTRAINTS

The algorithm for performing the search for the minimum of the error
function E, with respect to all the variables X reduces in general to: 1) care-
fully specifying the initial or starting point Xi, about which one is interested,
and 2) searching about this point until the error criterion is satisfied. As long
as the resulting xi's represents physically realizable elements, the technique
for obtaining the extremum point is an extension of the classical techniques
frequently employed to compute the unconstrained minimum of a function of
many variables. The consideration that all variables must be bounded leads

immediately to the problem of minimization with inequality constraints.
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In this effort, the constraint inequality limits the variables to only positive
values. The minimum is therefore a point in the interior of the constraint set.
The allowable direction of motion towards the minimum point is along any sur-

faces or constraint surfaces which contain the xi's.

Figure V-1 illustrates the case of two variables with inequality constraints.
The variable x, is a bounded variable having a least upper bound U, and a greatest

lower bound L1 such that L1 < x, <U.. The variable x, possesses a least upper

bound U2 and an inequality constlra.int1 on the lower end iuch that 0 XK, < Uz. Be-
cause of the non-linear aspects of the problem, the relative minimum of the
objective error function as determined by paths contained on the surfaces must

be tested to determine that no other point gives a lower value of the objective
function. At present the test consists of simply defining a new set of initial values
at a point near the original initial point and minimizing to determine if the process

converges to the same local extremum point.

B. QUADRATIC PROGRAM

To achieve the minimization of ®, a variation of the "gradient technique"
called "descent along a tangent' will be applied to assure convergence to a mini-
mum¥ It involves a systematic procedure of arriving at émin through successive
evaluations of ¢ at each change in the unknown parameters starting with an initial
guess of the variables. The iteration is continued until & begins to increase, and
then the iteration method is changed to the '"Taylor Series Approach' until the

L. . 1
minimum is found.

In the descent along a tangent method, @ is approximated by a linear function
&®=% +¢ @ (V-1)
o 1nn

where: € represents a change in the variable X, in the direction of the

normal to & = constant

* See Appendix "A" for geometric illustration of the derivation of equations.
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Figure V-1. Surfaces for Minimization with Inequality Constraint

and: n 2 1
_od _ _ 3¢ 2
‘ian-an—| grad@l’{.z’o(axi) } (V-2)
For & = 0, we have:
Qo
€ = -z (V-3)
n @n
The changes in the individual coordinates X;, are given by:
€, = €, cos (n, xi) (V-4)
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where: (n, xi) is the angle between the normal n, and the X5 axis.
so that:

¢, el
cos (n, Xi) = &; , and @1 = g (V-5)

Combining Equations (V-2) - (V~5), we obtain:

:_<I>0 @,

€ [ ijl (q)i)Z]

(V-6)

Change all coordinates X; to X, g and solve for &. Repeat the process until § is
minimized, or until a point is reached at which ® increases; then use the Taylor
Series Approach, repeating the whole process until there is no significant change

with minimum of &.

In the Taylor Series Approach, the least squares optimization is the mini-
mization of the sum of the squares of the difference between the desired function

and its linear approximation at the sampled points.

Expanding Equation (III-17) in a Taylor Series consisting of the linear terms

in € i.e., all terms of order higher than the first being omitted:

n o T0 (J wr) n
T (jw)~T, (w) +i‘i1 3%, €~ T, (jw) +12—='1 T, (Jwr) €

(V-7)
where the subscript in Ti denotes partial differentiation and is the ith derivative
evaluated at the rt'h sampled point. Rewriting Equation (V-7) by transposing all
terms on the right:

n
T (w,) - [To (w.)) +i§_3_1 T, (@) GiJz 0 (V-8)
Combining Equations (V-8) and (III-20), we obtain:

n
€(w,) —iE=1 T, (jw,) €~0 (forallr=1,2, ...,n) (V-9)

which can be written in expanded form as:

m n oR (w ) n o1 (w.)
_ _ o'r . o'V'r _
i'::l{[R (wr) Ro(wr) ?=1 o xi Gi]+ J [I (wr) _Io(wr)‘ —iz=1 o) xi 61]} =0

(V-10)
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so that the quantity to be minimized in the least squares sense, redefining the
symbolism used in Equation (III-23), is:
n oR (w )
M= Z {[R (w )-R (w ) ) ——a—x— Gi] +[I(wr) —Io(wr)
i=1 i
_3 oo ) ]2 } (V-11)
. X, i
i=1 i
Now, for M minimum, all its partial derivatives with respect to the variable el

must be equated to zero. This yields:

23‘ m {[R(%)—R(w) n aRg::or)ei]Jr[aR (wr)] [(‘"13 I(wr)]

'i%l aIaof:r) ei][a o )]} 0 (V-12)

a set of n (linear in ei) simultaneous equations which must be soived for ali i. The

steps for the solution of Equation (V-12) are readily programmed for solution by the
digital computer. The advantage of the Taylor Series Approach is that it does not

require the computation of the second partial derivatives.

In the n dimensional case, the simultaneous Equations (V-12) become:

1:221{[1% (w,) - R, (wr)][a—l—;—‘%?—z} [1 @) - Io(“’r)][ BI% (x":r) ]

-z { 3R (wr) [LaRa:: )‘i]+al%:(:r) [?:;1 aIg(_:ir) (i]}

(V-13)
evaluated for all i.

The entire procedure for the computational steps required to obtain a solu-
tion can best be shown when applied to a specific example. Consider the Rate
Gyro Filter (Figures II-3 and I1-4) , having previously determined the transfer
function to be:

1 1
T(s) & = - (V-14)
(s) [ 1+ 0.2(3%)«»(;—5)2] 0.0625 s> + 0.01258 + 1
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Note that:

M, = 1,M, = (0.0625 2+ 1), N; =0, Ny =0.0125 s (V-15)
So that, from Equation (III-16) we get:
MM, - NNy [ o.0625 62 +1 ]
Ev T(s) = 5 5 = [ 5 ]2 [ ]2 (V-16)
M, - N, 0.0625 s“ + 1|“ -0.0125 s
N,M, - N.M
0d T(s) = g 22 1 _ [ -0.0125 s ] (V-17)
M,% - N ] 2 . 2 27
2 2 0.0625 s“+1 - 0,01258 |

Along the ju axis, Equation (V-16) is strictly a real function of w and Equation
(V-17) is an imaginary function of . Therefore, reinterpreting Equations (V-16)
and (V-17) in light of Equation (III-17), we obtain:
[ 2]
R@,) = 1-0. 06225 or
[ 1-0.0625 wrz] + [0. 0125 wr]

(V-18)
2

—[0. 0125 wr]

I(w,) = (V-19)

9 2 2
[1 - 0.0625 w ] + [0. 0125 w ]
r T

Next, determine the network resulting in required order of transfer func-

tion. One such network meeting the requirements with specified termination is:

R, Ry Ly
T A'A'A" —A\ VWV YNV T
Elin =: cz §R4 EJQUT

Figure V-2, Terminated Network

Writing Equation (III-18) in terms of the above circuit gives the transfer
function:

out R

E 4
Ty(8) =g (5) = 5
in (R, LyCy) 8° + (Ly+R; R,Cy+R RyCy) 8 + (R +R 4R,

(V-20)
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Making the substitution of X, in Equation (V-20) for the dependent vari-

ables results in:

X1 =Ry
Xy =Cy
Xg = R3
xA = 0
‘x 9
Xg =Ry
%5
To(s) = 5 (V-21)
(xlxzx 4) 5 +(x 4+x1x2x5 + x1x2x3)s + (x1 + Xq + x5)
Solving Equation (V-21) for real and imaginary terms as required by
Equation (III-19), we get: ]
r. . e s 2
_ X5 ‘.Xl + x3 + x5 - (x1x2X4) (.ur _|
R (w)=
o''r 2 2 2
[X1+x3+x5 - XXXy @y ] +[(x4+x1x2x5 X ¥oX3) “’r]
(V-22)
_ - %5 [ (Xy + XXX + X XoXg) “’r]
I (w) = —= )
o r . 2 2
[x1+x3+x5 - (X XpXy) @, ] + [("4’”‘1"2"5 X X9¥3) “’r] _—
-23)

We now let ¢I>o be the value of ® in Equation (III-23) at the first approxima-

tion of the variables x Xy and where x_ is fixed at the value of the re-

1’ X2 X3» 5

quired resistive load.

Then:
&, = v [ R () - R, (wr)] 2, [I @) -1, (‘"r)] 2 } (V-24)

r=1
In the method of steepest descent along a tangent, we calculate increments

from Equation (V-6), here repeated:
o ¢

€. =- —21 (V-6)

i n 2
[ z &) ]

where ¢o is the value of @ at the initial approximation.
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Also in Equation (V-6):

_2® ,
P73 x; (V-25)
the value found from the initial approximation and denoted by: @i .
o
Therefore, evaluating Equation (V-25) we get:
3% m OR (w.)
=9 - - .o r
<I)i T 93X, Z_ 2 [R(wr) Ro(wr)][ d X, ]
o r=1 i
(V-26)

+ 2[—1(wr) -Io(wr)]['B_I'ac')';_ciLili ]}

foralli=1, 2, ...., n.

In Equation (V-26), the first partial with respect to X, of Equation (V-22) is:
2 2 2
{[x1+x3+x5 - (x1x2x4) W, ] + [(x4+x1x2x5 + x1x2x3) wr] }

3 2 2
{x5 Bxll I:x1+x3+x5 - (x1x2x4) w,. ]}-{xs[x1+x3+x5 - (x1x2x4) wr ]}

2 3 .2
{ 2 [x1+x3+x5 - (x1x2x4) w., ](———a x; [x1+x3+x5 - (x1x2x4) ‘“r ] >

1

3
R (w) 2 [(x4+x1x2"5+x1x2x3) “’r]( 3%, [( Xy X Xg¥g X ¥pXg) wr] ) }
B 2

X, 2
! X tX, X —(xxx)(.u2 +(x+xxx+xxx)w2]}
17375 17274 "'r 4 7172"5 71723 "r
(V-27)
Also in Equation (V-26), the first partial with respect to X5 of Equation
(V-23) is:

X X - 22+ +xx+xx)(:.>2
{[x1 Xgthg = (X XpXy) Wy ] [(x4 X1 Xo¥ 5% ¥9¥g r] }
3
{'xs %, [(x4+"1x2xs+x1x2"3) “’r]}"{'xs [(x4+x1x2x5+x1"2x3) ©p ]}
2 [x,+x, +x -(xxx)w2 i X, +X,+X —(xxx)w2
17375 172747 Tr axi 173 °5 172747 T
3
alo(wr) + 2 [(x4+xlxzx5+x1x2x3) r](-———ax [(x4+x1x2x5+x1x2x3) wr])}

i
axi 22 x+xxx)oo22
{[x1+x3+x5 - (XXX W, ] +[("4*"1"2 5t¥1¥9%3) Wy ] }

(V-28)
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and for the solution of Equations (V-27) and (V-28), we required the indicated
partial derivations of the variable xi for all i:

o) 2 2
?;El‘{[ X)Xy - (X XXy @), ]}z 1 - (xp%y) @y (V-29)
3 o 2
e [x1+x3+xs T (X XpXy) @y ]}‘ - (% €y
a,( a f

3 [ 21
—a—xgu_xlﬂtx?’wtxs - (x1x2x4) wr J 1

1 —
J =
}: ) ey

3 2
5{4‘{["1+x3+x5 - (Xy%eXy) & ]
g

a _5_{
axl
axz

s 2 . ‘
a—xg{[(x4+xlx2x5+xlx2x3) wr]} = (x,%,) @

~—

(XX XX 5 X XX 3) wr]}z (XoX5+XoXg) 0,

-« b -

Ryt K KR R XogKg) Wof § = (X Xp¥X K)o,

=

d -
a_xi{{(xfxlxzxfxlxzxa) "“r]}' Wy
\
For the solution of Equation (V-6), Equation (V-26) has to be determined.

Substitution of Equations (V-27), (V-28), (V-18), (V-19), (V-22), and
(V-23) into (V-26), we obtain its solution for use in Equation (V-6). With Equation
(V-6) solved, we now add these increments to the values used in our initial approxi-
mation, changing notation so that zero subscripts refer to the new approximations,
and recomputing the solution to Equation (V-24)

X, =X, + €, (V-30)
i, i

We iterate with this method until Equation (V-24) increases. When this occurs,
we resort to the Taylor Series Approach defined by Equation (V-13) with those
values of the variables as initial approximation used in the iteration step pre-

ceding the increase in Equation (V-24) of the tangent descent process.
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Equation (V-13) can be written in matrix form as:

T T _ T T
(AR Ap+A;TA) € AL Ep+A T E (V-31)
where:
~ .
R1 (wl) Rz(wl) e e e Rn (wl)
R1 (wz) R2 (wz) e e e Rn (wz)
AR=
R1 (wm) R2 (wm) e .Rn (wm)
L J
' I1 (uﬁ) I2 (wl) e e e In (wl)
Il(wz) Iz(wz) e e e In (“ﬁ)
AI =
I1 (wm) Iz(wm) e e e In (%)
—51 -
)
( —
E.n




and:

R, (@)
R, (,)

9 Ro
Ri(wr) = -

Ip ()

Ry (@) = R@W) - R (@)

@) =Iw) -1 (w,)

@)

3 X,
i

_ %I (wyp)

d X.
i

is the real part of the error evaluated at the rtd
sampled point.

is the imaginary part of the error evaluated at

the rth sampled point,

is the ith derivative of the imaginary part of To(jwr)
evaluated at the rth sampled point,

is the 1" derivative of the real part of T_(juy)
evaluated at the rﬂ:l sampled point.

Equation (V-31) can be solved for the unknown by matrix inversion as:

e=(A

T
R "R

A +A -1 (A

Teg +aTg

R Er*41 EY (V-32)
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The required mathematical steps for solution of Equation (V-32) are:
(1) Compute the derivatives Ri(wr) and Ii (wr).
(2) Solve for the errors E_, and EI'

R
(3) Perform indicated matrix multiplication, addition, and matrix in-

version,

The above result in the solution of the set of n simultaneous equations which yield

the new approximation (xi Xt ei) to the minimum.
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SECTION VI

EXAMPLE

This section is expository in nature, since a quadratic lag function syn-
thesis is considered in detail and a comparison is made between the various
methods used to develop the circuit and the resulting elements. A circuit for

a simple quadratic lag function l:——l—-—-]requirement as shown in Figures

.25
e &)
II-5 and I1-6 is synthesized, first by the '"classical method" and then by the
techniques presented in this work. The following matters will be discussed in

this section;

Classical Technique
First Synthesis
Second Synthesis

Comparison

A. CLASSICAL TECHNIQUE

This synthesis technique considers the make-up of the network as a
tandem -connected sequence of constant resistance sections, each one imposing
constraints on the over-all transfer function. It will be shown in the procedure
that to be physically realizable, the simple quadratic lag function must be
modified by surplus factors, resulting in a more complex forni for the trans-
fer function.

1. Physical Realizability Conditions

It can be shown that for a transfer function to be realizable by
passive elements in the form of tandem-connected stages in a constant resistance

ladder network, it must possess the following properties:

Be minimum phase.
Have no poles on the imaginary axis.

b Be positive real (pr).
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It may be noted by an inspection of Equations (VI-1) and (VI-2) that

the first two conditions are readily satisfied.

1 1
Q@ &) o.0625 s®+0.1258 + 1
- 1 (VI-2)

[S+(1+j/ﬁ)}[8+(1-j Jﬁ]

A constant gain factor, K, is introduced in the transfer function which

(VI-1)

must be determined to make the branch impedances realizable. (It is accounted
for by introducing a compensating gain factor for the over-all ladder network.)

To test for pr, consider the transfer function in the form:

T(s) = K[ 1 }= K [t (s)] (VI-3)
K(0. 0625 s2 + 0.125 s + 1)
where t (s) =[ 5 1 } (VI-4)

K (0.0625 s° + 0.125 s + 1)

substituting s = j w results in

2. .
1f6 [G6 - wz)z_J 2 “5]= R (w) +]I(w) (VI-5)
(16 - W) + (2w)

therefore, the real part is:

t(w) =

2 2
167 qae-dhy 7. NA ]
R (@) = : = (VI-6)
K [(16 AP ] DS

Now, noting that for > 0 the denominator is positive and the constants in front
of the brackets are also positive, one has to determine the conditions, if any, on

the numerator for all w=>0, to determine positive realness.

N (wz) =16 - w2 (VI-T)
2
now, for N (w ) to be pr
16 =  for all w=0 (VI-8)

therefore, since the above condition is not satisfied for all possible values of w,

the given transfer function is not pr.
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Multiplying the numerator and denominator of the above function by a
factor (S + o), a pr transfer function may be determined, leading to a physically

realizable network configuration consisting of passive elements.

Therefore:

_16 1 ]
t(s) = 3 [82+2s+16 ] (VI-9)

=[ (52 ) ][ 1 ]= t,(8) * ty(s) (VI-10)
Kl(s + 25 + 16) K2 (s + a)

where the particular value of o will be chosen so as to simplify the computation
and still satisfy the pr conditions, and:

[

6 1 1
== * T (VI-11)
K K K

It may now be noted that the fundamental transfer function has been
made more complex to meet the restrictions imposed by the physical realizability
conditions. At this point, the constant resistance ladder network consists of at

least two cascade stages, defined by the transfer functions t, (8) and t2 (s).

Determining the conditions for tl(s) to be pr, by substituting s = j w
results in: : '
=[16 oz+w2 (2 -a)] +j w[16 f2a—w2]

K, [(16 P 4 wz]

t,6 & =Rw) +jlw) (VI-12)

therefore, the real part is:

[6ere®@-0y] N1
K, [(16 - wz)2 +4w2] D1 (@)

Since K is a positive definite and the denominator is positive for all w = 0 the

R(w) (VI-13)

transfer function will be pr for the condition:
o < 2 (VI-14)
Therefore for ease of computation assume an:

a=1 (VI-15)
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resulting in a transfer function of the form:

t(s)=[ s +1 ][ 1

=t (s) " t, (s) (VI-16)
Kl(SerZSer) K2(S+1)] 1 2

To determine the value for Kl’ it may be shown that for a lead quadratic
of the general form sta

5 the value for K may be determined by
K(s™ + 2Cwns tw )

taking the largest value determined by the following equation:

. o 1
K = maximum (—, , —————-—>
(w 2 2t “n @

(VI-17)
n
Therefore, discriminating between the two values calculated from Eq. (VI-17)
1 _
e = 0.0625
K = (VI-18)
1
2x1 -1
max

results in using:

K, = 1 (VI-19)
Since tz(s) is a pr function, the choice of K

o Was governed by the
criterion of simplifying the computation.

Therefore, a K2 = 1 was chosen.
2. Determination of Circuit Parameters

The circuit configuration for a cascaded constant resistance ladder
network is shown in Figure VI-1.

Where:
Z, =1+ o— (VI-20)
an Z
bn
Z, = L1 (VI-21)
bn t (s)
n
Using Equations (VI-20) and (VI-21) to calculate Zal and Zbl results in:
Zyy ~ 17 T | (VI-22)
s+ —
s_, 1
15 15
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STAGE | STAGE 2

S T
f e i Z, ; T 1 Zy, |
V, Z,:R_ ' Za l Vo Z,=R, l Zy2 | Ry
lL ! | | '
Rl S—— A —— T

Figure VI-1. Cascaded Constant Resistance Ladder Stages

=82+25+16=S+

Zy1 s + 1 s 1 - (VI-23)

which may be interpreted circuitwise as shown in Figure VI-2.

R=ISN
L=IH DAAS
'a o g g Wm—.
R0 (S
:.—'-f
_1 15
l R=7oN
c=if |
L= —
5 "

Figure VI-2. First Stage of Ladder Network

In a manner similar to that indicated above, the impedances Za2 and
sz were calculated as:
=141 -
za2 =1+ - (VI-24)
sz =8 (VI-25)

which may be interpreted as the second stage circuit as shown in Figure VI-3.
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Figure VI-3. Second Stage of Ladder Network

The normalized constant resistance ladder network satisfying the
transfer function defined by Equation (VI-1) is indicated in Figure VI-4, with
the unnormalized values (RL = 800 (i) shown in parentheses. It contains 10
elements, and the over-all gain factor (K) that yields the final required compen-

sation network is given as Equation (VI-16).

R=I§
L=i (lzlli{\-) L=
R=1 Faaaal '
S R=
$(8oon) l(
R =g | R=1
c (sslgm *18 (800 N} $Rus
o ] > (800.N)
(1250 m#) L:u_s (83.3 mf) e T
|
(53.3H) T(IZSOmf)
: ®

Figure VI-4. Circuit Developed Using Classical Technique

B. FIRST SYNTHESIS

A simple configuration is considered first so as to develop some numerical
insight into the problems associated with the synthesis of networks. Figure VI-5
is a diagram of the network, containing its topology and impedances as suggested
in Table IV-2.
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Figure VI-5. One Mesh Circuit Used for[ 1 ]
NG %)

Although this configuration is trivial in the sense that the load imped-
ance is not considered, the insight gained from the calculations more than out-
weighs this criticism.

1. Equating Coefficients

Since the circuit transfer function was of the form:

ts) = 1 (VI-26)

LC s2 +RCs+1
it was possible to determine the values for the circuit parameters exactly by the

simple expedient of equating coefficients, therefore:

{ LC = 0.0625 ' (VI-27)
RC = 0.125

Assuming a particular value for the inductance:

L=400H (VI-28)

it is now possible to determine the other values uniquely as:
R=80000 (VI-29)

C = 156.25 mf : (VI-30)

2., Keeping One Variable Constant

For ease of computation the following normalized values were

arbitrarily chosen as the initial point to start the minimization process:

P (x), Xp Xg) =P_ (R, L, C)=P_(0.6, 0.4, 0.1) (VI-31)
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TABLE VI-1

SUMMARY OF FIRST SYNTHESIS ITERATIONS X2 = CONSTANT

Iteration X1 = R1 X2 = X3 = C2 Eo
1 .6 .4 .1 . 5532536487
2 . 6004387384 .4 . 1303752154 . 1573778386
3 . 6008942761 .4 .1473414394 . 0386337954
4 . 6015657763 .4 .1582284086 . 0185647458
5a, . 66454571351 .4 .2046841632 . 3492697383
5b . 8006996183 .4 .1582284086 . 0006366793
6 . 8006996183 .4 .1568967194 . 0000697935
7a2 . 8006996183 .4 .1565585856 . 0000166480
7b3 800 399.65049640H .156695499mf - -----------

1) Changed from tangent descent to relaxation technique

2) Final normalized values

3) Final denormalized values
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The results of the minimization of the error function E are summarized in Table
VI-1. A comparison of the final denormalized values, with the exact values
determined by equating the coefficients, shows that all values are within toler-

able error, and that the error could be decreased by further iterations.

3. Varying All Parameters

As the next step in the development all parameters were varied,
starting at the same initial point as previously. After thirty-six iterations
only, the final normalized values and final denormalized values are presented
in Table VI-2.

TABLE VI-2
SUMMARY OF FIRST SYNTHESIS ITERATIONS VARYING ALL PARAMETERS

Xl = Rl X2 = L1 X3 = 02 Eo
Normal Value 0.6015241501 0.3176630756 0.1967493373 0.0008948796
Denorm. Value 800 Q2 422,477568H 160.1524150Imf ---~--u-—-

By continuing the iteration process the error, Eo, could be further decreased,

bringing the values of the parameters closer to those determined previously.

C. SECOND SYNTHESIS

After considering the trivial single mesh case as noted in Subsection VI-B,
a simple two-mesh topology with load impedance was next used as a more realistic
approach to the problem. It may be noted that the circuit designer, by using the
. technique advocated in this work, has at his command a large number of networks,
each yielding the required transfer functions. By adhering strictly to the classical
approach, the designer has only a limited configuration that meets the rigid require-
ments which are satisfied in general by ideal elements. Figure VI-6 is a diagram of

the simple two-mesh topology and impedances suggested by Table IV-2.
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4
L
4
A
VA~

Figure VI-6. Two-Mesh Circuit Used for[—l—zsj }
Q ——
2\ 4

The basic idea for setting up the error function E of several variables X1

Xz, cee

E are also summarized below: (Subsection VI-C-2).

1.  "Setting up" E
1 1 0 0
Step (1) Define incidence matrlx:[ I ] “lo -1 1 1
T 1 0
Step (2) Find transpose of incidence matrix: [I]” = {1 -1
0 1
0 1
Step (3) Define elements of primitive diagonal matrix in complex
form:
- 1 _ .
R1 wsLl 01 0
0 0 0 0 0 -5C 0
I:z ] = +j wgCo
P 0 0 Ry 0 0 0
I 0 R 4 0 )
Step (4) Find the characteristic equation by matrix multiplication:

[al=1[{) [Zp] r1)7 , Where:

[Al= |:AR (ws)} +j [AI (ws)] =

90

.

w

S

L

o1
1 wscz

xn is outlined below. The results of the minimization of the error function

1

wscz

1
“’scz




Step (5) Find minor M,, of the determinant of: A

| My,
Step (6) Using the complex load Z, = R, + ] [ 0 ] multiply it by the
minor | M, | to define the numerator:
R4
n VY +in (b )VY=0+1i
"RV Y1V v wscz

Step (7) The circuit transfer function t(s) is now defined as:
ng @g) + § np (@)

t(s) = .

O A @) ¥ I A (@)

Step (8) Define the error function E as the magnitude function

squared which, summed over all discrete values of W yields:

E z {R(w)[R (Ry+R,) 1] I(w)[w L,(R,+R,) - “7162 (R1+R3+R4)] }2
S

s=0 2
+ {B(ws) [wsL1‘Rs+R4) - @10—2 (R +R+R 4)} (w )[Rl(R3+R Dt ! }“’s c }

which may be written using the generalized variable X, as:

t
E =Z{R(ws) Xy (x4+x5) + ;—3— ]— I(ws) {ws X, (x 5) ws )]}
s=0
+%§(ws) [wsxz (x4+x5)- UI;)E; (x +Xx +x5):| I(w ) [ 1(x +x5) + w x
(VI-32)

2. Evaluated Circuit Parameters

The result of minimizing Equation VI-32 in Step 8 of the preceding yielded
the normalized values for the network parameters. Table VI-3 summarizes the re-
sults at each iteration of the tangent descent procedure. Step 6b in Table VI-3 con-
tains the denormalized values that refer to the network configuration shown in

Figure VI-6.
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Since a desk calculator was used throughout this work, every effort
was made to decrease the calculations to 10 significant figures. The following
approximations were used, since they would not detract from the effectiveness

of the technique:

1) The particular frequencies of interest to NASA were located at
w =1.885, 7.8540, 12,8800, 19.1638, 23.876; for ease of
computation the frequencies that were used were w =1, 6, 12,
18, 24,

2) Although the error function should be summed over all the dis-
crete frequencies of interest, another simplification for com-
putational purposes was made in which the frequencies of in-

terest were limited to w= 1 and W= 6.

3) By using the values derived from the minimization procedure,
the transfer function was of the form:
t(s) = 0.864 | —L——<
Q 0.361
2% 4,47

This result is considered as an approximation, since the computation was

stopped when there was no significant change in the third decimal place of the
error function, and no further refined calculations (such as the gradient tech-

nique) were used.

Figures VI-7 and VI-8 compare the required curve (dotted line) with
the curve developed using the minimization curve (solid line). It may be noted
that for engineering purposes the gain errors are small at the_ two designated fre-
quencies of interest, and in certain regions there has been an improvement in

the phase response.

D. COMPARISON

A direct comparison between f‘igures VI-4, VI-5, and VI-6 shows that by
using classical synthesis techniques, a more complicated network configuration
results in the interconnection of ideal (i.e., non-dissipative) branch elements.
The simple quadratic lag function that was considered had to be modified by sur-

plus factors (resulting in a more complex form of the transfer function) before
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the classical synthesis procedure could be applied. The application of a digital
computer to the classical technique is improbable because of the difficulty in
writing a general program that would still only result in the calculation of ideal

element values.

By formulating and minimizing the objective (error) function, greater em-
phasis and control is placed on satisfying the specifications with various network
topologies at discrete frequencies of interest to the design engineer than by pre-
vious classical techniques. As indicated by Figures I-1 and VI-9, it is possible
to mechanize the process presented in this report for digital computer applications,

thereby simplifying the over-all synthesis procedure.

Minimum element count, topological configurations of interest, and pro-
bable computer mechanization further recommend this technique for synthesizing
networks by minimizing real-valued functionals rather than using the more classical

procedures.

96




Define elements of
s@art di matrix

lm =I3:6

matrix Store permanently
1T = 1T 1T
rxe 6x3 e

Store permsanently
Trxe ( : )

Bring I & 17 from storage. Perform |
matrix muitiplication to define real
part of impedsnce matrix

Store temporarily

L

Define real and ginary

Store temporarily
B (wg)

> Re s _..@
T
Ix{Re[R]}X1" = Rea, , a4 e,)
- Return i & i to storage
Define elements of primitive
Jdiagonal impedance matrix -
Zrac = Zoxs
= R1+mmw L- -3
Re“n 1 Ixngu.'s )
8 -
at discrete freq.'s wg
Bring 1 & IT from storage. Perform
matrix multiplication to define reai
part of impedance matrix Store temporarily
-1 T ImAg o —.@
Ix (Re[R]}XI" = ReA, dy(w)
Return I & 1T to storage
Command either minor Take particular minor
|—4 M)3 or M;; to be of Re Agya
taken of Re A3 x3 Re AlC
Multiply minor of
Evaluate determinate of 8, by load impedance
minor of COMPLEX COMPLEX MULTIPLICATION
MULTIPLICATION Results in
Re{nr(ws)} + Imfngw )}
Com either minor Take particular minor of
== M;; or M;, to be taken Im A, Im
of Im Ag.q 3x3 Im 8,0
3
Define complex load
. impedance
Zy = Re[R]+Im[XL]
!

Store temporarily
o nfwg)

Store permanently
Re(ws)

parts of known transfer
function T(s) at the discrete
frequencies wy

T(wg) = Re(wg) + jim{wg)

Figure VI-9. Flow Chart Outline of Main Program (Continued)

Store permanently
L o) —()

97




P9

Bring R(wg) & dp(wg) Store product
from storage & —® temporarily —’®
multiply

P 9

Bring I(wg) & di(wg) st od
e t

from storage & ore produc

multiply temporarily —-< :: )

Take from storage
Bring np(wg) from '@ 8 Square this sum Store temporaril
storage 8 |— A &D L @% al_ge ajcally (=t { @ _ @ _@.}2 " r@_ _@} g¥ _.®

P 5 .

Bring R{wg) & dy(wg)
from storage ané

Store product Q
multiply - temporarily

? ¥

Bring I{wg) & dp(wg)
from storbge & oot | ()
multiply P y

Bring nj(wg) from Take from storage

. : Square this sum Brin, from sto
-— i & 1i b 11 2 g storage
storage @ G f ebraically r " @ _} e

Store temporarily  |jug—

for later comparison use sum all

Error function now defined Repeat process for
@‘— for all wg and x; . Store ju@—i all wg sp%éﬁed & ’-—

Figure VI-9 (Continued). Flow Chart Outline of Main Program

98




SECTION VI

SUMMARY AND CONCLUSIONS

A technique for synthesizing networks with resistive loads, resulting in
normalized element values that have voltage transfer functions meeting the gain-
phase compensation requirements set by NASA, has been presented. By mini-
mization of the least squared error function using an iterative process such as
the "'tangent descent to a minimum" for a desk calculator, or the "gradient
technique" for a digital computer, the normalized element values can be deter-

mined.

The concept of synthesizing networks from topological considerations was
developed in Sections IV and V. A quadratic lag function synthesis was considered
in detail in Section VI; a comparison was made between the classical synthesis
technique and the one considered in this report. By considering topological con-
figurations of interest, the mathematical process (which can be mechanized for
digital computer application) yields less complex networks with non-ideal passive

elements than those determined by classical synthesis techniques.

From the studies that have been completed, it would seem that further re-
finements are possible, starting with the over-all design procedure. The ulti-
mate procedure is one that is completely computer-mechanized from the input
gain-phase NASA requirement to the output network topology and realistic com-
ponent values. Consequently, emphasis should be placed next on those subroutines
that now offer a high degree of success, consistent with the presented theory of
eventually being incorporated into the general approach.

A digital computer program should be written for 1) defining the objective
function to include various network topologies of interest, and 2) mechanizing the
iterative process used to determine the component values. Then, using the com-

puter program as a tool, various areas of interest, such as convergence to the
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absolute minimum, initial approximations, resulting circuit configurations, and

component values should be investigated.

The topology considerations should be expanded so that the best network
configuration can easily be determined. A general topology should be defined
that would be useful in generating a number of network configurations, each of
which satisfies the requirements. Then the best network should be defined,
using some criterion based on one or all of the following: ease of implementation,
component values, reliability, number of components, or even individual prefer-

ence.

Consistent with the input requirements, it should be possible to use this
information to generate those specific topologies from the general considerations
that would be the most advantageous to use in the iterative process of component

value determinations.

The additional work in the above areas could hopefully lead to simpler,
more straightforward computer procedures for the realization of any network

that is generally optimum in terms of its configuration and passive elements.
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APPENDIX "A"
THE GRADIENT METHOD OF STEEPEST DESCENT TO A MINIMUM

Derivation of the expressions used in the application of the method of steepest

descent for solving non-linear simultaneous equations will be derived.

Assume a choice of the X, variables as an initial solution is made at which
¢ of Equation (III-23) does not have a stationary value. The iteration method
described will result in an improved set of values of the parameters. If so
desired, they may be further improved (if the true minimum has not already
been reached) by a continuation of the process, considering this improved set

as a new initial solution.

If we regard X; as rectangular Cartesian coordinates in a Euclidean
n-space, for the trivial case n =2, the geometrical description may be displayed
accurately in a diagram. For n = 3, simple geometrical representation is not
possible; but since geometry in n-space is analogous to geometry in 2-space or
3-space, the geometrical illustration in 2-space serves as a general guide to

procedure and generalization to more variables will easily follow.

The method can be illustrated geometrically for the case of two variables
either by means of a three-dimensional diagram in which two dimensions are
used to accommodate the variables x and y and the third to accommodate the
response surface €, or by two-dimensional diagrams in which the response sur-

face is represented by contour lines of constant &.

In Figure A-1, let C, and C, represent curves of constant &, C, being
the curve of intersection of the surface ®(x, y) and the plane ‘I:) . The curve
Co

the point (xo, Yo Po) is our initial approximation to the absolute minimum of

is the intersection of the surface &(x, y) and the normal plane to C1 at Po;
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Figure A-1. Plot of the Surface ¢ = ®(x, y)

®, which in the depicted surface is the point PM. We approach this point PM

by a stepwise process of the gradient technique, that is, the direction of steepest
descent from our initial approximation is in the direction of the negative gradient
of ¢ which is in the direction of the curve C, extending to the local minimum at P.
The negative gradient direction is normal to a contour illustrated as the projected
axis in the x, y plane labeled n,. The local minimum P is shown as the point of
tangency, in the gradient direction n, to the contour C3. This minimum P of C2

is taken as a new approximation to PM and the process is repeated.
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In the plane (®, n) just now introduced, the curve C2 has an equation
¢=n). (Figure A-2)

Figure A-2. Plot of 02 in Coordinate Plane

A parabolic approximation to C2 by Taylor's theorem gives:
2

€
®= ¢o+%¢n+—22— én,n (A-1)

where:
a) <I>n and @n p 2re the values of the indicated partial derivatives evalu-
ated at the initial point Po'

b) € denotes the change in the x,y‘coordinates in the direction of the

normal to Cl’

To determine the point P, we set the partial derivative of Equation (A-1), taken

with respect to € to zero and solve the resulting expression as:

®

<n = —a.n__ (A_2)

n,n
From an application of the theory of vector analysis, <I>n in Equation (A-2)
is found to be the directional derivative of ¢ in a direction normal to the given
curve C, through P and is often written in the form g‘b. Thus if u is a unit
vector normal to C (the unit vector which has the direction of grad ¢ is 'B-T—|
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we have:

foli - 2 2
q’n=—n=grad¢'u=|grad¢[=¢'x +<I>y (A-3)
o) )
where: B‘I’o 3 éo
<I:'x T 3x e = 3
) Yo y
Qn, o’ the second partial of <I>n is
3d 2é
& = n _(_i_X_ + _n (_11 (A—4)

n,n ox dn dy dn

In Equation (A- 4), dx and ax are required. Writing the equation of the n-axis using

the point slope form of the equation of the straight line, namely,

d
Y - Yo gg - X)) (A-5)

which is the equation of the tangent to C1 at the point Po’ the line perpendicular

to C1 at Po would be the normal (n-axis):

Y-V, = (k- x) (4-6)

91%9 ..

%
_oy -
Y3 (A-7)
__9
X

Therefore, considering the point P of the curve C3 projected to the n axis having
coordinates x, y, the equation of the n axis in the (&, n) plane becomes:
é

Yo
y-Y, =5 x-%) (A-8)
X
o
Equation (A-8) can be written in terms of n as:
$ 2 (x-x ) <I>x 2,9 2
_ Yo _ 2 + _ )2 _ o Yo
n= Py (x xo) (x X, 3 (A-9)
X X
[6) (o]
and then we get:
nd )
*o %o
X = tx =D g +X (A-10)
@ +¢ o n (o]
X y
0] 0
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Yo Yo
y= ¥, TR F Y, (A-11)
® "+ n
X y
o o
Therefore:
‘bx
dx _ o]
a]:_l - é (A“12)
n
¢y
dvy _ “o
= (A-13)
n
The remaining terms on the right side of Equation (A-4) are evaluated as:
3¢ q>x <I>xx+q>y ¢xy
n_ "o oo o “o0’0 14
X & (A-14)
n
and:
o¢ éx q;: e @
n__"o 00 Yo Yoo A-15
n ,
We thus evaluate Equation (A-4), substituting (A-12), (A-13), (A-14), (A-15), and
get:
(¢X¢XX+¢ @ ><1> (@xq> +@ @ )cb
$ =-'-—0 0’0 Yo %o Y0 x6+ o X0 Yo Yo¥o/ Yo
nn % én q’n n
(A-16)
Equation (A-3) and Equation (A-16), substituted into Equation (A-2) gives:
_ o 3
¢ @,

€ - 17
% (g8, r8 8 )8 (8 @ +¢¢y)¢o] (A-17)

Xo xoxo Yo xoyo %o xoyo Yo¥0 Y0’ ¥
Now Equation (A-17), written in terms of the increments in the coordinate directions
is:
€, = €, CO8 (n,X) (A-18)
€, = €, C08 (n,y) (A-19)

Where (n, z) and o, y) are the angles between the n axis and the x and y axis, re-

spectively, and:
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1

X
cos (n,x) = -3—0— (A-20)
n
®
Yo
cos (n,y) = ra (A-21)
n
Thus finally utilizing Equations (A-18), (A-20), and (A-17), we get:
@ <c1> 2,9 2 >
o\ Yo Yo
€x77 8% '(dbxx + @ @x )+<I> (<I>x <I?X +¢@ & (A-22)
%o ofo Yo %% o o *o Yo Yoo
and for Equation (A-19), using Equations (A-21) and (A-17) gives:
5, (%1%,
€, Jo ° Yo (A-23)
y ® (¢ @ K +® (¢ & T® & -
yo( X0 *o%0 Yo %oY o) y o( %5 *Yo Yo yoyo)

Equations (A-22) and (A-23) denote the changes in the X,y coordinate axis

direction to the local minimum P.

Generalizing the above derivation to the case of X variables fori=1,2...n

we obtain:
N *
3 : 2
<I>n=a—§=| grad @ | T (®) (A-24)
i=1
where:
_[ad
¢ - [5;]
0
and: E
d; & D, . ]
452 ) s sac i (A-25)
nn 3n d3X. dn ¢2
=1 1 n

From Equations (A-24), (A-25), and (A-2) it follows that:
N 51372
{ ) @ }

i=1
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. and consequently, the changes, € in individual coordinates (xi) , for steepest

descent are given by:

N
ey
o™
1=
.—a-o‘
o
~—
[\

- - =1 _
€; = €, cos (n,xi) = (A-26)

T W T W T
—
[
-
|
»
L.
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APPENDIX "B"

THE METHOD OF STEEPEST DESCENT ALONG A TANGENT

This method, developed by Booth, is a rapid method for improvement of
the initial approximation, thus speeding up the process of convergence to a
minimum, since it does not require any calculation of second derviatives. This
is desirable for the application being considered where the variables are numer-
ous and the second derivatives complicated. It involves only the calculation of
the function to be minimized and its first derivatives.

In this approach, a linear approximation is made to the curve 02 of Figure
(A-1) as:

®=8_+¢ ‘b"o (B-1)

®: O +¢, Qno

Figure B-1. Descent Along Tangent
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In Equation (B-1), setting @ = 0, and solving, one obtains
€ = - &= (B-2)

This is equivalent to moving down the tangent to the (%, n) curve at the
point (Do, until the line intersects the n axis. The ordinate to the curve corres-
ponding to the point of intersection of the tangent line and the n axis will be the
approximation to @min. on the next iteration. The procedure is repeated using
the new approximation until ¢ begins to increase, shown as point P2 on Figure
B-1, at which time it is necessary to revert to a more accurate technique such

as Equation (A-1) or the Taylor series method.

The change in the individual coordinates is found utilizing the formulas
of Equations B-2, A-18, A-19, A-20, A-21, and given as:

¢ ¢
o i

(o]
= 1/2
) (@)
=1 °

€= Gn cos (n,xi) = - (B-3)

from which,

X. =xP 4 c.p (B-4)

with xip the variable in question, ith dimension, pth iteration.
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